Modulation of olfactory bulb neuron potassium current by tyrosine phosphorylation.

نویسندگان

  • D A Fadool
  • I B Levitan
چکیده

Insulin causes a suppression of whole-cell voltage-dependent outward current in cultured neurons from the rat olfactory bulb. This suppression is time-dependent; it is mimicked by application of Src tyrosine kinase inside the cell via the whole-cell patch electrode or by treatment of the olfactory bulb neurons with the tyrosine phosphatase inhibitor pervanadate. The C-type inactivation properties of the outward current in olfactory bulb neurons resemble those of the cloned Kv1.3 potassium channel. In addition, at picomolar concentrations at which it is specific for Kv1.3, the scorpion toxin margatoxin blocks most of the olfactory bulb neuron outward current. Immunocytochemical analysis demonstrates that Kv1.3 is prominent in the cultured olfactory bulb neurons. To identify specific amino acid residues that might be important for potassium current modulation, we examined the effects of pervanadate and insulin on wild-type and mutant Kv1.3 channels expressed in human embryonic kidney (HEK 293) cells. As shown previously, treatment with either pervanadate or insulin suppresses Kv1.3 current in these cells. Mutational analysis demonstrates that at least two distinct tyrosine residues are required for current suppression by pervanadate. Insulin treatment stimulates the tyrosine phosphorylation of Kv1.3 in HEK 293 cells, and a different combination of tyrosine residues is required for the current suppression by insulin. The results suggest that complex patterns of phosphorylation may be involved in the modulation of neuronal potassium current by receptor and nonreceptor tyrosine kinases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophysiological and behavioral phenotype of insulin receptor defective mice.

The olfactory bulb expresses one of the highest levels of insulin found in the brain. A high level of expression of the concomitant insulin receptor (IR) kinase is also retained in this brain region, even in the adult. We have previously demonstrated in a heterologous system that insulin modulates the voltage-dependent potassium channel, Kv1.3, through tyrosine phosphorylation of three key resi...

متن کامل

Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1.3.

Insulin and insulin receptor (IR) kinase are found in abundance in discrete brain regions yet insulin signaling in the CNS is not understood. Because it is known that the highest brain insulin-binding affinities, insulin-receptor density, and IR kinase activity are localized to the olfactory bulb, we sought to explore the downstream substrates for IR kinase in this region of the brain to better...

متن کامل

Kv1.3 Channel Gene-Targeted Deletion Produces “Super-Smeller Mice” with Altered Glomeruli, Interacting Scaffolding Proteins, and Biophysics

Mice with gene-targeted deletion of the Kv1.3 channel were generated to study its role in olfactory function. Potassium currents in olfactory bulb mitral cells from Kv1.3 null mice have slow inactivation kinetics, a modified voltage dependence, and a dampened C-type inactivation and fail to be modulated by activators of receptor tyrosine signaling cascades. Kv1.3 deletion increases expression o...

متن کامل

Glucose sensitivity of mouse olfactory bulb neurons is conveyed by a voltage-gated potassium channel.

The olfactory bulb has recently been proposed to serve as a metabolic sensor of internal chemistry, particularly that modified by metabolism. Because the voltage-dependent potassium channel Kv1.3 regulates a large proportion of the outward current in olfactory bulb neurons and gene-targeted deletion of the protein produces a phenotype of resistance to diet-induced obesity in mice, we hypothesiz...

متن کامل

Post-synaptic density perturbs insulin-induced Kv1.3 channel modulation via a clustering mechanism involving the SH3 domain.

The olfactory bulb (OB) contains the highest concentration of the insulin receptor (IR) kinase in the central nervous system; however, its functional role and modulation in this region remains poorly understood. IR kinase contains a number of proline-rich motifs, making it an excellent candidate for modulation by SH(3) domain-containing adaptor proteins. Kv1.3, a voltage-gated Shaker potassium ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 16  شماره 

صفحات  -

تاریخ انتشار 1998